搶嫗戝妛戝妛堾岺妛宯尋媶壢 儅僥儕傾儖岺妛愱峌 婌懡尋媶幒
JAPANESE
ENGLISH
OUR RESEARCH ACTIVITIES



Our goal is to develop functional materials and control of their interfaces, for the applications to contribute to the realization of energy-efficient community. The currently on-going research subjects are as follows.

< Our research activities are introduced in the university's PR magazines! >

An interview with Professor Kita is on "Student-edited UTokyo Faculty of Engineerig PR Brochure Ttime!" 2022 summer edition, which is a message to undergraduate and high school students who are about to choose their carrier paths.
( Link for "Research on Semiconductor Devices for High-Efficiency Power Conversion" in Ttime! 2022 summer edition)

An article to introduce professor Kita's work is in "FRONTIER SCIENCES" section on Graduate School of Frontier Sciences PR Magine "SOSEI" No. 40 (published in Sep 2022).
( Link for "Material Science: The Driver of Electron Device Evolution" in SOSEI No. 40)


Material Design and Processes for Highly-Efficient Energy Conversion Devices

Press Release
丗 Our collaborative work with Mitsubishi Electric Corporation on SiC MOSFET channel mobility analysis is introduced (Dec 5, 2017).乯
News release from Mitsubishi Electric Corporation
Press release from School of Engineering, The University of Tokyo

High-perfomance power devices are expected to very high-energy efficient electric conversions. We are now developing novel processes to improve the SiC based power electronic devices.

1. SiC Power MOSFET Fabrication Process Technologies
- Novel process development for High-quality SiC MOS Interface.
- Analysis of oxide growth kinetics on SiC and oxide structures near interface.
- Control of energy barriers at SiC-metal interfaces.

In thermal oxidation of SiC, oxidation-induced byproduct, carbon, is a possible source of the high density interface state density at SiC/SiO2. Thus a smooth elimination of carbon byproduct from the interface is essentially important to form an ideal interface structure. We are currently working on the precise analysis of oxidation kinetics in nanometer-thick region.
   
 仯 A schematic of SiO2 growth by thermal oxidation of SiC. The reduction of interface defect formation is needed. 仯 Oxide growth on 4H-SiC(0001) in nanometer-thick region was found to follow the interface-reaction-limited model (based on accurate determination of film thickness of nanometer-thick films).

We attained the MOS interface with interface state density as low as below 1011cm-2eV-1 on 4H-SiC (0001) face by the control of thermal oxidation conditions. This is the world smallest level of the interface state density for 4H-SiC(0001). The characteristics of MOS capacitor are almost identical with the theoretically expected ideal ones.
   
 仯 C-V (capacitance-voltage乯 characteristics of 4H-SiC (0001). High-frequency curve is almost identical with an ideal one shown by dotted line. 仯 Comparison of the interface state density on 4H-SiC with the previously reported typical values on 4H-SiC. The world-smallest value was demonstrated in our study (from the press release on July 25, 2014).

At the interface between SiC and the thermally-grown SiO2,
we have ultrathin strained-SiO2 layer. The interface with small density of interface defects is attained by this transition layer formation. It is crucial to understand the SiC MOS interface microscopic structure to understand the factors to determine the intrinsic properties of this interface.
   
 仯 Significant peak shifts of lattice vibrations of SiO2 for a few nanometer-thick thermal oxides on SiC, caused by the strained structure formation at SiC/SiO2 interface (FTIR-ATR analysis). 仯Strained structure of thermal oxides on SiC within a few nanometer from the interface strongly depends on the crystal faces of SiC. We found that the amount of shift of the lattice vibration peaks is quite different between the oxides on (0001) and (000-1) faces (thickness-dependence of the FTIR-ATR peaks乯.

Previous press release : Introducing our research results in the past!
Japan Science and Technology Agency乮JST乯
(Jul 25, 2014)

Material Design and Technologies for Future Ultralow Power Consuming Nano-Electronics

We are doing from basic researches on functional nano-scale stacks and interfaces to device designs for the ultralow-power-consuming advanced electronic devices with novel operation mechanisms.

2. Magnetisms and Interface Design for Ferromagnetic Stacks

- Voltage control of magnetic anisotoropy of ultrathin ferromagnets
(Joint research with IBM T. J. Watson Research Center)

Ferromagnetic stacks with perpendicular magnetic anisotorpy are useful in electron devices, which is often realized by using ultrathin ferromagnetic films as thin as ~1 nm to enhance the effects of interface magnetic anisotropy. The magnetic anisotropy of oxide/ferromagnetic stacks sensitively changes by both structure and composition at the interface. We are surveying the important factors to determine the properties of this interface to develop a guideline to control the interface magnetic anisotropy.
The voltage application can change the interface magnetic ansiotropy. This phenomenon may lead us to develop a new kinds of spintronics devices including ultralow-power-consuming memory devices. We are investigating the way to design the interface to maximize this effect.
 
 仯 Depth profile change of MgO/CoFeB 乮乣1nm)/Ta stacks by thermal treatment. We clarified that Ta diffusion has a siginificant impact on interface anisotropy energy (HR-RBS analysis). 仯 Voltage-induced change of magnetization behavior of Ru/Al2O3(10nm)/MgO(1nm)/CoFeB 乮1.2nm)/Ta stack due to the change of interface magnetic anisotropy. The response to the out-of-plane field is compared for the cases with -8 V and +6V application between Ru and Ta 乮collaborative study with IBM T. J. Watson Research Center乯.

3. Dielectric Properties and Interface of Ultrathin High-k Oxides
- Material design of high-k (high dielectric constant) oxides for CMOS gate insulators.
- Understanding the phenomena at oxide interface, such as interface dipole layer formation which contributes to the threshould voltage control of MOS devices.


Electron potential barrier sometimes appears at the interface between two kinds of oxides by "interface dipole effect", even those two materials are insulators without free electrons. This interface effect has an important role in MOS devices, in the control of threshould votage of transistors. We are investigating the physical origin of the dipoles to establish a guideline to control this phenomenon.

 
 仯Schematic image of the interface dipole layer between high-k dielectric and SiO2 on Si (for the case of dipole from high-k toward SiO2). 仯 Strength of the interface dipole effect between high-k and SiO2 seems to correlate with areal density of oxygen atoms in high-k materials. The microscopic structural property of high-k oxides should be one of the important factors to detemine the dipole effects.

4. Optically-Functional Oxide Semiconductor Stacks
-
Material designs for all-oxide electrochromic devices



 
  KITA RESEARCH GROUP The University of Tokyo